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ABSTRACT

Light-Field Style Transfer

David Marvin Hart
Department of Computer Science, BYU

Master of Science

For many years, light fields have been a unique way of capturing a scene. By using a
particular set of optics, a light field camera is able to, in a single moment, take images of the
same scene from multiple perspectives. These perspectives can be used to calculate the scene
geometry and allow for effects not possible with standard photographs, such as refocus and
the creation of novel views.

Neural style transfer is the process of training a neural network to render photographs
in the style of a particular painting or piece of art. This is a simple process for a single
photograph, but naively applying style transfer to each view in a light field generates
inconsistencies in coloring between views. Because of these inconsistencies, common light
field effects break down.

We propose a style transfer method for light fields that maintains consistencies between
different views of the scene. This is done by using warping techniques based on the depth
estimation of the scene. These warped images are then used to compare areas of similarity
between views and incorporate differences into the loss function of the style transfer network.
Additionally, this is done in a post-training fashion, which removes the need for a light field
training set.

Keywords: light field, style transfer, computational photography, multi-view imaging
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Chapter 1

Introduction

1.1 Motivation

When our eyes see an object in the world, our brains can automatically approximate a

distance to that object. We can do this effectively and quickly because of two factors. First,

we have two eyes that see the object from slightly different perspectives. Second, we move

our heads frequently, providing additional views of the object. From the many views that

our brain receives, it is able to analyze movement and parallax to triangulate a position for

an object.

With a single digital photograph of a scene, determining the depth is not possible

without additional information. At least one additional view is required to triangulate any

true distances in the scene.

A light field camera seeks to resolve this problem by taking multiples shots of the

same scene from multiple perspectives. This is done by using a special micro array of optics.

When the light hits this micro array, it separates the light based on the angle from which it

entered the camera. With some processing of the separated light, an image can be generated

that is equivalent to taking the photograph from multiple, slightly offset locations. These

locations are small translational shifts from a central view as shown in Figure 1.1.

With all this additional information, light fields allow for the estimation of depth in a

scene and additional calculations that are not possible with standard photographs. These,

in turn, can be used for novel effects unique to light field images. For example, a light field

1
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Figure 1.1: Example light field views. Each image in the grid is taken from the same light
field data and represents a small translational movement from its neighbors. This shift in
viewpoint can be seen by comparing the locations of the leaves in the foreground in each
view.

can generate focal stacks and refocus images even after the picture is taken. These novel

effects are well explored [5, 29, 38, 39]. However, the task of editing a light field directly is

very difficult. This is due to the many views that need to be edited at once. Any attempt

to make a correction or augmentation in one view of the image needs to be appropriately

propagated to each independent view in the light field.

Style transfer is an example of such an edit. The goal is to render a photograph in

the artistic styling of a particular painting or photo. In previous years, this was done in a

variety of ways such as computationally recreating brushstrokes to match a target image [17]

or by analyzing patches of the source image and applying them optimally to generate a given

photo [20]. In more recent years, style transfer has been revolutionized with neural networks

that are trained to reproduce a photo in a particular style. This is a process that has been

well studied and continues to be investigated, leading to further improvements in quality

[9, 25, 50].

The naive approach to styling a light field would be to apply the style transfer to each

view independently, but the style transferring neural network has no indication of spatial

2
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Figure 1.2: Example naive stylization of two light field views. The two images on the left are
two views from the same light field image. Even though there are minimal visual differences
between these two images, the stylization of these two views (shown on the right) results in
dramatic differences in the coloring and features that are present.

consistency between the images as shown in Figure 1.2. Thus, this approach leads to the same

part of an object having different colors based on the view it is seen from. This inconsistency

degrades the scene geometry that could normally be calculated from a light field. Without

this intrinsic consistency and geometry, none of the effects that are normally associated

with light fields can be processed in a visually coherent manner. In order to eliminate these

inconsistencies, it is necessary to determine correspondences between views of the light field.

This process is often used in stylization techniques that are designed to work in applications

such as video [44] and stereo imaging [3, 14]. These methods, however, cannot be applied

directly to light fields since they are dependent on specific correspondence algorithms and

neural networks that were not designed or trained for light field data.

For this thesis, we implement a method of light field stylization that allows for

consistencies in color between the different views of the light field. Our method uses the

scene geometry to inform the neural network of locations that are the same between views.

This is done in such a way that it does not require retraining the style transfer specifically

for light fields. Thus, previously trained networks can be used and large light field databases

do not need to be created.

In the following section, we present an overview of our method. In Chapter 2, we

present a paper submitted to the Winter Conference on Applications of Computer Vision 2020.

This paper goes into greater detail into the concepts and algorithms that were utilized in this

3
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work. In Chapter 3, we present additional details in regards to our calibration and training

techniques. In Chapter 4, we present additional work and studies that were conducted after

the submission of the paper in Chapter 2.

1.2 Overview of Method

This section provides an overview of the light field styilization method presented in this work.

A more complete description can be found in Chapter 2.

1.2.1 Disparity

The primary reason that a regular style transfer network cannot stylize a light field in a

consistent manner is that it has no notion of similarities between views of the light field. If

these correspondences could be determined, one image could be warped to the space of the

other to find areas of similar content as shown in Figure 1.3. Thus, we wish to calculate

correspondence between pixels in adjacent views. This is done by generating a disparity map,

which indicates the amount of shift a pixel undergoes when the viewpoint shifts. An example

of such a disparity map is shown in Figure 1.4.

We propose that the most effective way of generating these disparity maps is by using

the depth map that is calculated from the epipolar images of the light field. This depth map

is generally precomputed for light field images in standard light field collections and is easily

accessible. Although this depth map is not calibrated, it provides the relative scene geometry

and can be used to generate disparities through an optimization process. This process is

described in detail in Chapter 3. While this concept is common to work in stereo vision, we

extend it by describing pairwise disparity maps between any view in the light field and the

central view of light field.

4
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Figure 1.3: The central view (left), an adjacent view (middle), and the warped central view
(right). The central view can be warped based on the disparity map to match the adjacent
view. This warping has areas of unknown content since some material cannot be seen from
the central view.

Figure 1.4: The known disparity of the central view (shown on the left) and the calculated
disparity for an adjacent view (shown on the right). Red pixels denote areas of unknown
disparity. Also, note that the disparities switch signs between images since the direction of
shift changes to get from one view to the other.

5
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Figure 1.5: An example consistency mask (shown on the right) for the central view compared
to an adjacent view (left and middle respectively).

1.2.2 Consistency Masks

The purpose of all the calculation in the previous section is to provide a way of informing

the style transfer network of areas of consistencies. Ideally, every pixel in a light field view

would have a matching pixel in the central view. However, because of occlusions, pixels may

have no corresponding partner in the central view. Additionally, an occlusion may be partial,

giving some interpolated value between the value of the original pixel and the value of the

pixel that is partially occluding it. To deal with both of these issues, we must generate a

consistency mask for each view of the light field. This mask tells which pixels have a true

match in the central view. It also handles partial occlusions by using a value between 0 and

1 describing the amount of consistency that should be present. Example consistency masks

are shown in Figure 1.5 and Figure 1.6.

The consistency masks are generated for every view in the light field. With the

disparity maps and consistency masks precomputed, consistency can now be enforced on the

style transfer network.

6
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Figure 1.6: An example consistency mask (shown on the right) for the central view compared to
an adjacent view (left and middle respectively). The grayscale value describes the percentage
of consistency that should be enforced for each pixel. The grayscale values are amplified for
visualization.

1.2.3 Style Transfer with Disparity Loss

Training a feed forward style transfer network is a time-consuming process that generally

requires thousands or even millions of training images. Since light field images require

tremendous amounts of storage space, light field datasets are very small and are not sufficient

for the task of training a style-transfer network. Thus, any consistency constraints that are

instituted must work within the framework of existing pretrained style transfer networks.

In order to stylize the light field in a consistent way, we utilize the disparity maps and

consistency masks that are precomputed for the light field. We start by stylizing the central

view through the feed-forward network proposed by Johnson et al. [25]. Then for every other

view, we stylize it through the feed-forward network and compare it to a warped version of

the central view. The mean squared error is computed, which we use as the disparity loss.

The image is then optimized to reduce the loss until it converges.

Additional improvements include allowing the optimization to backpropogate through

the stylization network, fusing features in the encoding space, and adding perceptual loss to

the optimization. The full method is described in detail in Chapter 2, including experimental

comparison of the effects of these different elements and variants.

Using this optimization process, we are able to generate stylized light field images

that are angularly consistent across views as shown in Figure 1.7, marking substantial visual

7
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Figure 1.7: An example stylization of a light field (Top) done naively compared to (Bottom)
our method.

improvements over the naive method. In addition to qualitative improvements, we can

evaluate the stylize light field by its ability refocus and generate depth maps. As shown in

Figures 1.8 and 2.6 respectively, the stylized light field can appropriately refocus and generate

depth in manner similar to the original light field.

8
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Figure 1.8: Example stylization of a focal stack. Top: Near focus for the original and stylized
light field. Bottom: Far focus for the original and stylized light field.

a) Naive b) Proposed c) Unstylized

Figure 1.9: Depth maps computed [23] from stylized light fields. Depth maps computed from
naively stylized light fields (a) demonstrate errors due to the lack of angular consistency
while those reconstructed from light fields stylized using our method (b) are similar to those
computed from original unstylized light fields (c).

9
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Chapter 2

Light-Field Style Transfer

2.1 Introduction

Light field photography continues to be a technology that presents many challenges and

problems to overcome including memory constraints and editing difficulties. However, it also

presents fascinating capabilities that are not possible with regular images, such as novel view

synthesis and focal stack generation. In recent years, we have seen light field technology

adopted for more and more commercial applications, from virtual- and augmented-reality

systems to dedicated light-field cameras such as those from Lytro (based on the work of [38]).

Many variants on multiple-camera imaging configurations are beginning to become more

commonplace in the commercial market (ex. dual-camera configurations increasingly found

in cell phones), and methods for working with these images often draw from concepts in

light-field literature.

“Painterly” and other forms of non-photorealistic rendering of one image based on the

style of another have a long history in computer graphics. We refer the interested reader to the

original work of [17, 19, 20] as well as more recent work in [34] and surveys in [16, 18]. This

area has seen a resurgence in recent years due to the application of deep neural networks to the

problem. Rather than trying to analyze brush strokes, texture, or other properties explicitly,

recent methods for neural style transfer treat the problem as one of optimizing for preservation

of the content of one image and the stylistic properties of another. The groundbreaking

work of Gatys et al. [9] and the feed-forward method presented by Johnson et al. [25] have

10
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Figure 2.1: Stylization of two views from a light field with 81 images. Even though there are
minimal visual differences between these two views from the same light field image (top),
the stylization of these two views (middle) results in dramatic differences in the coloring and
features that are not present in the original. Our proposed method results in consistency not
only between these two views (bottom) but the entire set of 81 views.

11
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opened the door to many variations on these ideas, including improved methods of direct

optimization on the resulting image [27, 40], modifications to the feed-forward stylization

network [28, 30, 31], stylizing for texture synthesis [46, 47], using depth information to inform

stylization [33], training a single network to perform multiple stylizations [50], providing

greater control over the stylization [10], stylizing video [2, 15, 21, 44], and stylizing stereo

pairs [3, 14].

We seek to expand neural stylization to light-field images. This would present new

possibilities in stylization not seen before, such as novel viewpoint generation and dynamic

refocusing of stylized images. Expanding stylization to different types of photography has

been done before for 360◦ video [44], RGB-D [33], and stereo imaging [3, 14], but light

fields present their own challenges that cannot be solved by simply generalizing one of these

methods.

The naive approach to stylizing a light field would be to use a single-image style

transfer network for each view independently, but such a network has no notion of angular

consistency between the images, which generally leads to visual differences as shown in

Fig. 2.1. Both [14] and [3] note these inconsistencies when naively stylizing stereo images

(what [14] refers to as the “baseline” method). This problem is only exacerbated when one

goes from two images for a stereo pair to the much larger number of views in a light-field

image (typically on the order of 50–200). This inconsistency degrades the scene geometry

that could normally be calculated from a light field. Without this intrinsic consistency and

geometry, none of the effects that are normally associated with light fields can be processed

in a visually coherent manner.

This paper presents a method for stylizing light field images in a way that maintains

angular consistency between the different views. We first demonstrate an effective way

to generate disparity maps for each view of the light field given only a single depth map.

Then, we exploit the scene geometry to inform the network of locations that are the same

between views, extending the concept of multiple-image consistency used previously for video

12
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sequences [44] and stereo pairs [3, 14]. Additionally, the proposed method does not require

retraining the base feed-forward style transfer network [25] specifically for light fields. This

allows previously trained networks to be used and avoids the need for large light-field datasets.

As light field technology continues to improve and be adopted for more applications,

the need for methods of light field editing will continue to grow, especially as the capabilities

of image-processing neural networks also continue to expand. Although this work is specific to

neural style transfer, it potentially lays a foundation for light-field consistency optimizations

that could generalize to other applications.

2.2 Related Work

Light field research continues to expand as light field cameras become increasingly available

for commercial applications. Light fields can be used to create novel views and generate focal

stacks [5, 29, 38]. Light fields can also be used to calculate more accurate depth estimates

using epipolar images and light field features [4, 22, 23, 32]. The multiple angles and views of a

light field also allow for separation of the diffuse and specular components of reflectance [1, 8].

Work has even been done to use light fields for classification, especially of materials [48].

As described in the introduction, the work in this paper seeks to extend the ideas of

neural stylization to light field images, for which the key challenge is maintaining angular

consistency between the multiple stylized views. Maintaining such consistency in the result is

an essential element of any approach that edits multiple images with corresponding content,

such as video sequences or stereo pairs [35, 37]. The key in these approaches is to identify or

use existing methods to identify correspondences between the images (optical flow for video,

stereo correspondence, etc.) and ensure that the results maintain this correspondence.

Ruder et al. [44] first introduced the idea of using such correspondences to extend

neural style transfer to video sequences. They used optical flow to identify the correspondences

and extended the optimization-based stylization approach of Gatys et al. [9] to include an

13
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additional consistency loss term. These ideas were extended by Chen et al. [2] to train a

feed-forward network (building on [25]) to produce similarly consistent video stylization.

Chen et al. [3] and Gong et al. [14] have each proposed methods for photo-consistent

style transfer for stereo pairs, which can be thought of as a much smaller subset (two images)

of a light field. The approach of Chen et al. [3] builds on a network structure similar to their

earlier video-stylization work [2] to train a feed-forward network to learn to perform the

stylization. Gong et al. [14] likewise train a feed-forward network to perform stylization.

This paper incorporates elements of both [3] and [14], but neither of these methods

for stylizing image pairs directly generalize to the much larger number of views in light fields

because 1) both methods rely on having pairwise disparity maps from each view to the other,

2) both depend on a single network to stylize all views, and 3) both rely on retraining the

network on a large dataset. Extrapolating such an approach to a full light field is simply not

viable.

2.3 Multiview Angular Consistency

To enforce angular consistency between multiple views, pixel-wise correspondence needs to be

determined for each view in the light field. The most effective way of doing this is by using the

depth map that is calculated from the epipolar images of the light field (e.g., [4, 22, 23, 32]),

leveraging more information from the field than in two-image stereo correspondence. Using

such methods, the depth map is generally precomputed for light field images in standard

datasets [42, 43] and is easily accessible. However, such methods usually produce a depth

map only for the central (reference) view and not for each separate view in the light field [24],

which must be addressed for consistent stylization. The method proposed here is independent

of the choice of method used to estimate depth and assumes that the depth map for the

central view has been precomputed.

This paper adopts the notation of [23] and most other recent work by indexing the

subaperture views by (s, t) and the pixels within each view by (x, y). Individual subaperture

14
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views are thus denoted as Is,t with the central image as I0,0 and others indexed using both

positive and negative relative (s, t) indices.

Although the central-view depth map is often not calibrated, it provides relative

scene geometry and can be inverted and calibrated to produce a pixel disparity map D0,0

using a simple optimization algorithm to estimate the unknown scaling due to focal length,

imaging pixel density, and the (effective) baseline separation of the subaperture views [7].

Specifically, this optimization inversely scales the depth map to produce the disparity map

D0,0 that maximizes the correspondence between the central view and the adjacent view to

the right, giving us the mapping I0,0 → I1,0. For many light fields, including those shown in

our results, there is also an additional translation and cropping for each view, resulting in a

planar horopter at an unknown depth and a mix of both positive and negative disparities.

To accommodate such cases, we add a second optimized calibration parameter that adds a

translation bias. This allows for negative disparities even though the inverted depth map is

all positive values.

Because stereo images are typically separated along a horizontal baseline, disparity

is often mistakenly thought of solely as the degree of opposite horizontal movement as one

moves in a horizontal direction. But it is important to remember that disparity is the degree

of apparent opposite movement as one moves the camera in any direction. Thus, the reference

disparity map D0,0 thought of as horizontally mapping I0,0 → I1,0 can just as easily be used

to provide the mapping I0,0 → I0,1 as one moves vertically. Similarly, the vector field that

maps I0,0 → Is,t can be calculated using D0,0(x, y) [s, t]T .

As noted previously, depth maps for light fields are often computed only for the central

(reference) view, allowing computation of a disparity map for this view only. A disparity map

for an image allows for forward-mapping of each pixel to where it maps to in another view,

which can be many-to-one in the case of occlusion or none-to-one in the case of disocclusion.

Instead of using forward warping, however, we desire to use backward warping of the central

view to the other views, which requires disparity maps Ds,t(x, y) for each of the other views.
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Figure 2.2: Reversing the central disparity map D0,0 to produce (partial and masked) disparity
maps Ds,t for other viewpoints. Top: Views I0,0 and I2,0 of the light field. Middle: The
disparity map from I0,0 → I2,0 (left) and the reversed disparity map from I2,0 → I0,0 (right).
Red denotes areas of occlusion that are not seen in the central view. Bottom: The consistency
mask Ms,t with fuzzy values for partial occlusions or low-confidence correspondences, with
zero (black) for points with no correspondence.
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We assign disparity Ds,t(x, y) for each pixel in each view through a simple search to

find the set of pixels (potentially empty, one, or more than one) in the central image that

map to that pixel (x, y) in view (s, t). While this might seem to be an expensive search, it can

be constrained in multiple ways: 1) epipolar geometry constrains the corresponding points to

match along the line (x− s Ds,t(x, y), y − t Ds,t(x, y)), and 2) the minimum and maximum

disparities in the central disparity map D0,0 can be used to bound the search range along, or

near, the epipolar line.

For each candidate matching point (x′, y′), we consider all candidate matches that

satisfy ∥∥(x′ + s D0,0(x
′, y′), y′ + t D0,0(x

′, y′))− (x, y)
∥∥ < ε (2.1)

for some small value of ε large enough to account for discrete pixel sampling. (We use ε = 1.4.)

Using the idea of stereo symmetries and plausible disparities from [45], we then select

the potentially matching candidate with the largest disparity D0,0(x
′, y′), which ensures that

the front-most surface is chosen when occlusion causes a many-to-one forward mapping for

the point. If no satisfactory match is found, this indicates the disocclusion that would result

in a none-to-one forward mapping. An example of inverting the central disparity map can be

found in Fig. 2.2, with “no correspondence” disoccluded regions indicated in red.

During this search we simultaneously compute a correspondence confidence map

Ms,t (as also shown in Fig. 2.2) where Ms,t(x, y) ∈ [0, 1] is determined by comparing the

quality of the pixel correspondences (using normalized RGB distance) determined through

the just-described search process:

Ms,t(x, y) = 1− ||Is,t(x, y)−W (I0,0, Ds,t)(x, y)||/
√

3 (2.2)

where W (I0,0, Ds,t) denotes the backward warping from image I0,0 based on the disparity

map Ds,t:

W (I0,0, Ds,t)(x, y) = Î0,0(x− s Ds,t(x, y), y − t Ds,t(x, y)) (2.3)

with Î denoting interpolation of image I and all pixel values assumed to be in the range [0, 1]

for each color channel. If no correspondence was found through the search using Eq. 2.1,
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the backward warping is undefined and Ms,t(x, y) is set to 0. We use this confidence map

as a mask when enforcing consistency (similar to the function of the “gate map” in [14]).

This allows greater inconsistency where the original correspondences are uncertain, when

partial-pixel effects near object edges produce imperfect correspondence, or when there is

otherwise angular inconsistency (e.g., specular reflections [49]) and not enforcing consistency

at all where no correspondence exists.

2.4 Style Transfer for Light Fields

Training a feed-forward style-transfer network is a time-consuming process that generally

requires thousands or even millions of training images [25]. Since light field images require

relatively large amounts of storage compared to typical single or even stereo images, existing

light field datasets are very small and not sufficient for the task of training a feed-forward

style-transfer network. Thus, any consistency constraints that are instituted must work

within the framework of existing pre-trained style-transfer networks.

We propose a method for light-field style transfer that maintains angular consistency

between views. For this method, we use a pre-trained feed-forward network as described

in Johnson et al. [25], specifically the implementation found at [41]. While we choose to

work with this specific implementation, our method could also be adapted to fit within

the structures of more recent feed-forward stylization networks, such as those found in [28]

and [30]. An overview of our architecture is shown in Fig. 2.3.

To stylize the light field, we first encode the features F0,0 of the central image I0,0

using the first (encoder) half of the stylization network. These features are then decoded

using the second (decoder) half of the network to produce I ′0,0. These are then held fixed as

we stylize the rest of the views.

For each other view Is,t of the light field, the features Fs,t are also encoded and blended

using the correspondence confidence map Ms,t with a version of the central-view features
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Figure 2.3: Network architecture for neural stylization of light field images. The lower channel
stylizes I0,0 to produce I ′0,0 with intermediate feature map F0,0, all of which are then held
fixed. The upper channel is repeated for each other view Is,t. The encoded feature map for
this image Fs,t is then fused with the warped F0,0 using the confidence map Ms,t and decoded
to produce I ′s,t. The masked disparity loss between I ′s,t and a warped I ′0,0 is calculated and is
backpropagated through the entire network updating only the encoding and decoding parts
of the pre-trained feed-forward stylization subnetwork. This process is repeated for some
number of epochs for each view Is,t to optimize the result.

warped to view (s, t) using Ds,t:

F ′s,t = Ms,t �W (F0,0, Ds,t) + (1−Ms,t)� Fs,t (2.4)

This is similar to the process described in [14] (one of the dual channels) and [3] (single-

directional variant). The warped-and-fused feature map is then decoded into the stylized

image I ′s,t.

A disparity (angular consistency) loss [3, 14] is calculated using I ′s,t and a warped

version of I ′0,0, again modulated by correspondence confidence map Ms,t:

Ldisparity = ||Ms,t � (I ′s,t −W (I ′0,0, Ds,t))||2. (2.5)

The disparity loss is then backpropagated through the network. This repeats until convergence

or a maximum number of iterations is reached.
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Algorithm 1 Light-Field Style Transfer
Require: Pre-trained Style Transfer Network θ on Image S
Require: Light Field I, Disparity Maps D, and Consistency Masks M
Returns: Style Transferred Light Field I ′

1: F0,0 ← θencode(I0,0)
2: I ′0,0 ← θdecode(F0,0)
3: for s, t in I do
4: for epochs do
5: Fs,t ← θencode(Is,t)
6: F ′

s,t ←Ms,t �W (F0,0, Ds,t) + (1−Ms,t)� Fs,t

7: I ′s,t ← θdecode(F
′
s,t)

8: Ldisparity ← ||Ms,t � (I ′s,t −W (I0,0, Ds,t))||2
9: θ ←BackProp(θ,Ldisparity)

10: Fs,t ← θencode(Is,t)
11: F ′

s,t ←Ms,t �W (F0,0, Ds,t) + (1−Ms,t)� Fs,t

12: I ′s,t ← θdecode(F
′
s,t)

13: return I ′

This process is repeated for each subaperture view as described in Algorithm 1. In

our implementation, we use a learning rate of 1e-2 and run it for a maximum of 50 epochs

(though we found most views converge after 40 epochs approximately). We also use the

overfit stylization network from one view as the initial stylization network for the next view

rather than resetting the network. We have found that this works best when the shift from

one view to the next is small, so we visit the different views Is,t by alternating the ordering

on successive rows (i.e., boustrophedonically) so that the shift in viewpoint is always to an

adjacent view. We also double the epochs for the first view visited to increase stability of

stylization.

Although our integration of warped and fused feature is similar to the approaches

in [3] and [14], there are distinct modifications necessary to allow such an approach to work

for light fields beyond simply the number of views.

In [3], these features are warped to a common hypothetical view that is located halfway

between the two images in the stereo pair, and then the two are fused. In a light field for

which only a central-view depth map has been computed, however, the only reference point

that can act as a common view for all N×N images is the central view. Thus, only the central

view features are warped and fused with other view features. This is done using bilinearly
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resized versions of the disparity maps and consistency masks to match the resolution of the

features.

In [14], the features are warped and fused in both directions, providing a more

consistent version of the features between the pair. While this process provides good results

for an image pair, it does not generalize to light fields. Allowing all N ×N views of a light

field to have an influence on the central view leads to an aggressively averaged set of features,

which leads to very blurry output images. Thus, in the method proposed here, the central

view features are held fixed during all stages of the algorithm. This restriction on the central

view is necessary in order to force the network to converge in a way that keeps consistency

between all views of the light field while maintaining high-quality output.

It is important to note that our architecture is not used to train a feed-forward network

for light fields. Instead, our algorithm provides a method for optimizing a single light field

image in a reasonable amount of time. It is similar to the optimization presented by Gatys et

al. [9], but warping of the features and initializing with feed-forward stylization allows the

optimization to converge much faster and does not require training on perceptual loss.

2.5 Results and Evaluation

Since there are no other methods for neural stylization of light fields to compare against,

we present qualitative results (visual examples) and quantitative evaluation of the degree to

which the resulting stylization preserves both perceptual factors (content and style loss) and

inter-view angular consistency (disparity loss).

2.5.1 Qualitative Evaluation

Our method works for a variety of models and images. Fig. 2.4 shows subsets of the views

from light fields stylized with the proposed method. To more clearly see the consistency and

shift between views, We also provide epipolar images of the stylized light fields in Fig. 2.5.
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Figure 2.4: “Swans” light field image stylized with our method. A subset of the full set of
stylized views is shown. The views are selected with a stride of 3 to each side of the central
view.
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a) b)

c) d)

Figure 2.5: a) The central view of the “Swans” light field image. b) The epipolar image in
the highlighted region part a. c) The central view of the stylized light field image. d) The
epipolar image of the highlighted region part c.
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a) Naive b) Proposed c) Unstylized

Figure 2.6: Depth maps computed [23] from stylized light fields. Depth maps computed from
naively stylized light fields (a) demonstrate errors due to the lack of angular consistency
while those reconstructed from light fields stylized using our method (b) are similar to those
computed from original unstylized light fields (c).

Additional results can be found in the supplemental materials accompanying this paper,

which include a video that better shows the angular consistency between shifting subaperture

views.

In addition to visually inspecting the individual views for angular consistency, we can

also determine how well the stylized light field maintains geometric properties of the original.

One way to verify this is to recompute depth maps from the stylized light fields and compare

them to those of the unstylized light fields. Fig. 2.6 shows an example of this using the

“Swans” light field, the “Mosaic” style image, and the depth computation method from [23].

As shown in Fig. 2.6a, naively stylized light fields do a poor job retaining depth properties

due to the lack of angular consistency. Light fields stylized with our method do a better job

preserving depth properties (2.6b) and are similar to those of the unstylized original (2.6c).

Light field images are often used to render dynamically refocused images of the

captured scene as first described in [38]. If the light field is angularly consistent, it should

maintain the ability to refocus even in the stylized format. This ability to refocus the stylized

light field is demonstrated in Fig. 2.7.
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a) b)

c) d)

Figure 2.7: The focal stack of an example stylization. Near focus for the a) original and
b) stylized light field. Far focus for the c) original and d) stylized light field.
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Perceptual Loss
Candy Mosaic Rain Princess Udnie

Naive 3954244 4520050 3628793 830148
Ours 3954242 4520043 3628792 830148

Disparity Loss
Naive 6044 8807 3845 690
Ours 113 139 102 40

Table 2.1: Evaluation of perceptual and disparity loss for multiple stylization models. Our
method keeps similar perceptual loss to the naive method while greatly decreasing the
disparity loss.

2.5.2 Quantitative Evaluation

The primary metric for neural style transfer is perceptual loss [25], combining the ideas

of content loss and style loss from [9]. As in [3] and [14], for multiview stylization we can

combine this metric with disparity loss (Eq. 2.5) to evaluate angular consistency. An ideal

light field stylization method should be able to minimize the disparity loss without increasing

the perceptual loss. In Table 2.1, we compare our results to the baseline of naively stylizing

each view independently. This evaluation uses four different styles and presents the per-view

average loss. The proposed method causes only an extremely small increase in perceptual

loss across all four styles, which is to be expected since this is balanced against disparity loss.

The most significant change is in the disparity (angular consistency) loss, which

drops by an order of magnitude or more, quantitatively validating the visual consistency

demonstrated in Figs. 2.1 and 2.4.

2.6 Variations and Experiments

In addition to evaluating the proposed method, we also explore several variations and

simplifications to evaluate the relative contributions of various elements of the approach.

As noted in Section 2.4, our approach begins with a pre-trained style transfer network

and then iteratively optimizes the network variables to reduce the disparity loss for a single
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image rather than trying to train a single network to function in a purely feedforward way

that generalizes to other images. This raises the question of whether one could simply use a

purely optimization-based approach such as a Gatys-like network that incorporates perceptual

loss and the additional disparity loss term to encourage consistency. We have explored that

option and found that although it produces good results, the optimization does all of the

work from scratch instead of being able to leverage a pre-trained stylization network and

explicitly warped-and-fused feature maps. As such, it requires significantly more iterations

and typically takes about twice as long to run as the proposed method.

We explore other variations of the full method proposed in Section 2.4 and illustrated

in Fig. 2.3. These variations are described in the following subsections and summarized

in Table 2.2. For comparison of the possible variations, we analyze the average per-view

perceptual loss and disparity loss for a set of light fields, the results of which are given in

Table 2.3.

For the Naive method (independently stylized views), we again see that the disparity

loss is high because no angular consistency was enforced. For a consistently stylized light

field, we would expect the disparity loss to greatly decrease while the perceptual loss remains

unchanged. Table 2.3 shows that all of the variations explored here produce light fields with

nearly identical perceptual loss. This is to be expected since any given view considered in

isolation maintains the properties of the stylization, even if inconsistent with the other views.

Thus, rather than focusing on perceptual loss, we use disparity loss as the main comparison

metric when comparing and discussing the following variations.

Warp/Fuse Features Warp/Fuse Images No Fusion
Full BP BPFuseFeatures1 BPFuseImg BPNoFuse
Post-optimize OptFuseFeatures OptFuseImg OptNoFuse
No iteration NaiveFuse WarpBlend Naive2
1 The full method proposed in Section 2.4
2 What [3] refers to as “baseline”

Table 2.2: Variations on the proposed method explored in Section 2.6
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Perceptual Loss
Warp/Fuse Features Warp/Fuse Images No Fusion

Full BP 3193389 3193389 3193388
Post-optimize 3193386 3193388 3193380
No iteration 3193392 3193389 3193391

Disparity Loss
Full BP 98 16 363
Post-optimize 15 14 14
No iteration 2089 25 4846

Execution Time (seconds)
Full BP 308 304 304
Post-optimize 135 137 136
No iteration 43 45 42

Table 2.3: Comparison of perceptual loss, disparity loss, and execution time for variations of
the proposed method

2.6.1 Fusion Variations

Our method, like [3] and [14], pairwise fuses elements of two images in the feature map domain.

This raises the question of whether such feature-map fusion is preferable to image-space

fusion (i.e., fusing I ′0,0 and I ′s,t instead of F0,0 and Fs,t) or is even required at all. When

we analyze the methods that use fusion in the image domain (represented as the middle

column in Table 2.3), it is clear that these methods have the lowest masked disparity loss.

However, visual analysis of the stylized light fields produced with these methods shows

that artifacts appear frequently in the unmasked regions, which are not factored into the

quantitative masked disparity loss. Warping and fusing in the image domain also relies heavily

on the notion that this process is done with perfect disparity maps. In reality, noise in

the image data, featureless regions, ambiguous matches, discrete pixel sampling, and other

factors cause imperfect depth or disparity estimates, all of which are well known issues with

stereo, multi-view stereo, and light-field depth estimation. This over-reliance on the accurate

disparities can cause additional artifacts that are undesirable in the final images as shown

in Fig. 2.8. We believe that fusing feature maps and then decoding them results in visually
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Figure 2.8: Two views of “Swans” stylized using the WarpBlend variant (image-space fusion
without subsequent optimization). Methods that fuse in the image domain are highly
dependent on accurate disparity maps. Errors in the disparity maps lead to visual artifacts
in the final stylized light field, such as those shown in the red and blue callouts.

better (more artifact-free) stylizations than image-space fusion after decoding because the

decoding of the feature maps mitigates such artifacts.

Since the fusion step takes time, we also consider whether fusion is even necessary for

the optimization to converge and whether it could be discarded in order to save processing

time. While the disparity loss is comparable to that of other backpropagating methods, the

lack of a fusion step causes the network to take longer to converge on each individual view,

especially the earliest optimized views. If this method is trained with the same learning

rate, number of epochs, and optimization sequence as described in Section 2.4, it results in

some views having ghosting artifacts, especially in areas with high frequency content. Thus,

the number of optimization epochs must be increased to produce results comparable to the

proposed method, more than offsetting any potential time savings.

2.6.2 Optimization Variations

Our method performs optimization by backpropagating all the way back through the styliza-

tion encoder/decoder, essentially the same as extreme overfitting of the network to a single

set of light-field views. Another option would be to use the feed-forward stylization network,

including warping and fusion of the feature maps, to produce initial estimates of I ′s,t and
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then post-optimize with the pixels of I ′s,t as the only updated variables. Such a method is

essentially the same as generating the I ′s,t images using warped and fused feature maps and

then running it through a Gatys-like optimization including the additional disparity loss term.

It is also worth considering if a light field can be stylized without the need for an optimization

at all, but relying solely on warping and fusing feature maps to create consistency. Upon

experimenting with these optimization variations, we find three key findings.

First, fusing features and then post-optimizing I ′s,t to reduce disparity loss without

backpropagating through the network (OptFuseFeatures) results in worse angular consistency

than propagating the loss back through the stylization encoder/decoder (BPFuseFeatures,

our primary method). This can be attributed to the initial fusing of features F0,0 with Fs,t,

which essentially alpha-blends features maps from a network that has not trained on disparity

loss. Allowing the feed-forward stylization encoder/decoder to train on disparity loss allows

these to learn to produce more consistent feature maps.

Second, the WarpBlend method, which uses image-space warping and blending with

no subsequent optimization, gives reasonable results with a roughly 12x speedup compared to

the method proposed in this paper since it requires no iterative optimization. This method

essentially involves independently stylizing each view using the pre-trained stylization network

and then employing a purely image-space approach to warp the stylized central view I ′0,0 to

each of the other views and blending it with the initial stylization I ′s,t for those views using

the correspondence confidence map Ms,t. This means it could serve as an alternative to the

proposed method if greater speed is desired. However, we reiterate that because it relies

entirely on accurate disparity-based warping in image space, it is susceptible to qualitative

visual artifacts from disparity errors as discussed earlier in Section 2.6.1 and shown in Fig. 2.8.

These are not factored into the masked disparity loss.

Third, we find all methods of post-optimization on the output image to be undesirable.

Since it can only optimize on the disparity loss, it eventually converges to give essentially the
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Perceptual Loss
BPFuseFeatures BPFuseImg BPNoFuse

Both Loss Terms 3193389 3193389 3193388
Disp. Loss Only 3193389 3193389 3193388

Disparity Loss
BPFuseFeatures BPFuseImg BPNoFuse

Both Loss Terms 98 16 363
Disp. Loss Only 99 16 366

Execution Time (seconds)
BPFuseFeatures BPFuseImg BPNoFuse

Both Loss Terms 566 565 565
Disp. Loss Only 308 304 304

Table 2.4: Comparison of backpropagating / optimizing using combined perceptual and
disparity loss to using disparity loss alone

same results as the WarpBlend method (which can be thought of as the minimization of the

disparity loss), and thus retains all the same visual artifacts.

2.6.3 Loss Function

For the results described so far in this section, we either backpropagate through the stylization

network or post-optimize the output image using only disparity loss. Given that the stylization

network has been pre-trained to minimize perceptual loss [25], we consider the question of

whether it is effective to include perceptual loss to minimize visual artifacts along occlusion

boundaries. However, we have found that backpropagating perceptual loss and disparity loss

produces results that are nearly indistinguishable visually from those created using disparity

loss alone, as shown in Fig. 2.9 and in Table 2.4. This is also evident when analyzing the

disparity loss for each view of the light field as shown in Fig. 2.10. Excluding perceptual loss

from the optimization also avoids having to backpropagate through the VGG-16 network at

the end of the overall network, reducing the computation required. We have found that this

reduces the execution time by approximately 35% with comparable results.
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Figure 2.9: “Lake” light field stylized using BPFuseFeatures optimized with the disparity
loss and perceptual loss (top) and the disparity loss only (bottom). Results are visually
indistinguishable.

Figure 2.10: Visualization of disparity loss by view for a) Naive, b) BPNoFuse optimized on
disparity loss only, c) BPNoFuse optimized on disparity and perceptual loss, d) BPFuseFea-
tures optimized on disparity loss only, and e) BPFuseFeatures optimized on disparity and
perceptual loss.
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2.7 Conclusion

This paper presents the first neural style-transfer method for light fields that achieves high-

quality visual results while maintaining angular consistency. The method uses a given

central-view depth map to create masked and confidence-weighted disparity maps for each

other view, allowing backward warping from the central view to all other views. This warping

and masking is vital to the optimization process and consistently stylized results. As with

recent methods for stereoscopic neural stylization, we fuse warped feature maps using a

confidence-weighted mask. Unlike these methods, we do not try to train a single network

to stylize different light fields in a purely feed-forward fashion. Instead, we incorporate

pre-trained monocular style-transfer networks and iteratively optimize them for each view.

These results are validated both qualitatively (visually) and quantitatively. We

also present variants of this method that allow for trade-offs between angular consistency,

sensitivity to errors in the original depth map, and execution time.
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Chapter 3

Implementation Details

Since WACV requires that all papers remain under a particular page length, there are

important details to this work that could not be included in the paper submission. In this

chapter, we present details specific to implementation that will be helpful to those that wish

to implement or build on this method in the future.

3.1 Disparity Calibration

As stated in Section 2.3, the light field depth map typically comes uncalibrated, and thus,

the disparity map is uncalibrated since it is simply treated as an inversion of the depth map.

Fortunately, the true disparity map D is linearly related to the uncalibrated disparity map

D̃. Thus, there is some multiplicative factor k and offset b that can be applied to solve for

the true disparity map (i.e., D = kD̃ − b). Thus, the process of calibration becomes an

optimization of these two parameters for each view.

In our current implementation, a random search is performed to find these two

parameters. Values for k are sampled randomly from a log-normal distribution that starts at

0 and peaks at 1.0. Values for b are sampled from a standard normal distribution.

In order to determine the best k and b values, our optimization algorithm assumes

the sampled k and b values and warps the central view to an adjacent view based on those

values. If the values are optimal, we would expect the warped central view to be similar to

the adjacent view, but we would expect some mismatch to occur since there are occlusions

in the adjacent view that are not present in the central view. Thus, we optimize on the
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Algorithm 2 Disparity Calibration

Require: Light Field I, Uncalibrated Disparity Map D̃ Returns: Calibrated Disparity Map D

1: k ← 1
2: b← 0
3: for epochs do
4: ˆI0,0 ←W (I0,1, k ∗ D̃ − b)
5: errors ← || ˆI0,0 − I0,0||2
6: errors ← first(sort(errors),95%)
7: error ←

∑
errors

8: if error < error’ do
9: error’ ← error

10: k′ ← k
11: b′ ← b
12: k ← sample(eN (0,1))
13: b← sample(N (0, 1))

14: D ← k′D − b′
15: return D

difference between the warped central view and the adjacent view, but we exclude the top

5% of mismatch to account for errors along occlusion boundaries. The k and b values with

the lowest error are used for the final calibration. This full process is shown in Algorithm 2.

Once the k and b values are known, the disparity is calibrated from the central view

to an adjacent view (what was referenced as D0,0 in Section 2.3). To calculate the other

disparity maps (i.e.,, from the central view to any other view in the light field), the following

assumptions can be made:

• The disparity from the central view to the view two images to the right is the same

as twice the disparity from the central view to the adjacent view to the right (i.e.,

dx2i = 2dxi).

• The disparity from the central view to the adjacent view on the left is the same as the

negative of the disparity from the central view to the adjacent view to the right (i.e.,

dx−i = −dxi).

• The disparity from the central view to the adjacent view above is the same as the

disparity from the central view to the adjacent view to the right (i.e., dyi = dxi).
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Thus, finding each disparity map becomes the simple task of taking the previously calculated

disparity and multiplying by a constant factor based on the current view of interest. Note

that this simple multiplication is possible because the spacing is equal between all light field

views in our data set. If another method of acquisition was used, such as using a robotic

gantry arm, location information would be required to determine the exact relation between

disparities in the different views.

The process described above is the process that was used to generate the results found

in Chapter 2. However, we did explore the possibility of fine-tuning the k and b values in

certain ways. For example, instead of calibrating to the immediately adjacent view, the

optimization could be done on a different view of the light field. Alternatively, the k and b

values could be optimized to minimize error across the whole light field instead of a single

view. The algorithm could also allow for different k and b values that are fined-tuned for

each view. An example of k values selected for each when fine tuned is shown in Figure 3.1.

In exploring these variations, we did find that certain practices improved overall

calibration, albeit with minimal impact on the final result. Calibrating on a view that is

further from the center of the light field tended to avoid artifacts along edge views. A global

optimization across all views had minimal effect and took far too long to be pragmatic.

Allowing for each view to fine-tune the k and b values actually caused overfitting of the error

function, which caused a jitter effect as the viewer scanned across views. Fine-tuning only

k for each view was more stable, but again takes far too long to be preferred over a single

calibration method.

Overall, we empirically found our single-view calibration algorithm to be the fastest

method to generate angularly consistent results.
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Figure 3.1: Chart of k values when tuned for each view in the “Swans” image.
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Figure 3.2: The stylization for a view on the left side of the light field (Left) and the associated
disparity loss for each view (Right) when using naive scanning order. Note that the left side
view is blurred. This is caused by high disparity loss on left side views as the network has
difficulty transitioning from a far right view to a far left view.

3.2 Optimization

As Section 2.4 points out, we used hyperparameter values of α = 1, β = 5, and γ = 500 and

a learning rate of 1e-2 for 50 epochs. We empirically found these values to work the best.

However, some light field stylizations converged to angular consistency as soon as 30 epochs.

We also found the light field never converges to an angularly consistent result if it is trained

with a learning rate above 1e-2.

The order that the light field views are visited are very important. Initially, we were

optimizing the views in a naive scanline order. However, we found large amounts of error

on the left side views of the light field, as shown in Figure 3.2. This artifact is caused by

the sudden spatial jump that the network must learn. Thus, it is more effective to select

the next view to optimize to be adjacent to the previous view. Thus, we optimize in a

boustrophedonical order (i.e., scanning right on odd rows and scanning left on even rows).

Additionally, we found that the network has the most to learn on the first view it optimizes,

so we optimize this view for twice as many epochs. Combining this longer initial training

with the specific ordering of views gives much improved results, as shown in Figure 3.3.
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Figure 3.3: The stylization for a view on the left side of the light field (Left) and the associated
disparity loss for each view (Right) when using our scanning order. Note the improved image
quality compared to the results shown in Figure 3.2. Also note the high disparity loss that
remains in the first view visited (i.e.,Top Left). This suggests that increasing the number of
training epochs for the first view is preferable.

3.3 Evaluation

In addition to visually and qualitatively analyzing the generated light fields, we introduced

three quantitative metrics in Chapter 2. Specifically, we analyzed the resulting loss values for

perceptual and disparity loss, recomputed depth maps from the stylization, and simulated

refocusing on the stylized light field.

Our reported perceptual loss comes from the first two terms of our loss function (i.e.,

Lcontent and Lstyle). However, rather than weighting them by α and β, the reported perceptual

loss values is the simple sum of the content loss and the style loss (i.e., Lcontent + Lstyle). We

decided to report in this fashion since a fully stylized image has near zero content loss. Thus,

the style loss is the main contributor to the value. Since we wanted this to remain unscaled,

we decided to use an unweighted sum rather than a weighted sum.

The recomputed depth maps were calculated using the algorithm described by Jeon

et al. [23]. We used a MATLAB implementation found at the author’s website [6].

Refocusing of images was coded using the original refocus formula (Equation 4.1)

found in Ren Ng’s disseration [38]. We reimplemented this refocusing algorithm for our work.
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Chapter 4

Extensions and Future Work

4.1 Gatys Style Training

As stated in Section 2.6, we also explored optimizing a stylized light field with an additional

disparity term in a fashion similar to Gatys et al. [9] rather than starting with a pre-trained

feed forward network. In actuality, our research initially used a Gatys-like optimization,

and it does generate results comparable to our method presented in Chapter 2 as shown in

Figure 4.1. However, it maintains the same weakness of the Gatys et al. method, which is

that it is much slower than the feed-forward networks such as those proposed by Johnson et

al.[25]. We thus chose in the end to utilize a feed forward network to decrease the run time

of the overall algorithm.

4.2 Depth Loss

Although our method provides angularly consistent stylization for a light field, we found

that our stylizations would look unnatural when switching between views. This was caused

by “brush strokes” going across edges that mark the transition from a foreground object

to a background object. In other words, our method like most stylization methods doesn’t

properly segment the image for depth discontinuities.

In addition to the disparity loss and perceptual loss described in Section 2.4, we also

experimented with a depth loss term similar to that proposed by Liu et al. [33]. This term

is calculated as the squared difference of the computed depth for the original light field to
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Figure 4.1: An example light field stylization optimized without a feed forward network.
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the computed depth for the stylized light field (i.e., Ldepth = ||D(Îs,t) − D(Is,t)||2)) . The

purpose of this additional loss term is to prevent artifacts along depth discontinuities in the

stylization, which should lead to smoother transitions between views.

Rather than going through an expensive and potentially non-differentiable depth

calculation, the depth of both the original and stylized views of the light field are predicted

with a depth prediction network. We used a Pytorch implementation [36] of the monocular

depth estimation network proposed by Godard et al. [13]. The network was trained on the

KITTI dataset [11].

As an experiment, we added the depth loss term to the loss function on our original

optimization method. When this term is added, it affects the stylization by changing the

relative sizes of “brush strokes”. However, it is severely limited by the accuracy of the depth

estimation network used. The KITTI dataset contains primarily cityscape images, so the

depth prediction network does poorly when predicting depths for other types of scenes. This

leads to the stylization being ill-informed as shown in Figure 4.2.

While a better depth prediction network could be used, there is an additional hurdle

that must be overcome. If a pretrained feed forward network is used in the optimization,

it will have no indication of depth. Thus, it would have to be initially trained to minimize

depth loss before it could be used in the full algorithm.

The need for two specialized depth networks led us to abandon this line of work.

4.3 Gibbs Loss

When analyzing our stylized light fields, we found that most artifacts were unsurprisingly in

the masked occlusion regions. These artifacts occur because there is no information from

the central view to inform the stylization. In order to combat this, we attempted to add an

additional term that computed the Gibbs energy [12] along boundaries in the masked region.
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a) b)

c) d)

Figure 4.2: a) The central view of the light field, b) The predicted depth, c) The stylization
with no depth loss term, and d) The stylization with the depth loss term. Note that the
depth loss does affect the stylization, but a poor depth estimation causes many undesirable
artifacts.
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Figure 4.3: A light field stylization with a high Gibbs loss term. The high value illustrates
the smoothing that occurs along occlusion boundaries.

This was done by multiplying the Gibbs energy at each pixel by the gradient magnitude of

the mask:

LGibbs =
∑
i

||∇M̂ ||2i
∑

k∈N(i)

(Îi − Îk)2. (4.1)

We call this loss term Gibbs Loss. In theory, this should smooth results in uninformed areas,

giving a more visual appealing transition along occlusion boundaries as shown in Figure 4.3.

We found in our results that while Gibbs loss removed artifacts along occlusion boundaries,

it generally led to undesirable effects that gave the stylization a unauthentic visual feel, as

shown in Figure 4.4. Thus, we did not include this loss term in our final results.

4.4 Feed-Forward Network

A very apparent weakness of our method is the computation time required to optimize the

stylization for the light field. It remains an open question whether this process could be
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Figure 4.4: An example stylization with the included Gibbs loss term. The central view (left)
is compared to the view two to the right of center (right). Even small movements between
views causes unrealistic blurring in the final result.

learned by a network so that consistent light field stylization can be done with a forward

pass. Similar to the way Johnson et al. [25] trained a network over the stylizations generated

by the work of Gatys et al. [9], our results might be used as the training set for a future

feed-forward light-field stylization method.

One major obstacle that remains to be overcome in general is using a light field

as input for a neural network. Given current technology and network architectures, it is

impractical to input the entire network at one time. However, alternatives that would train

on a subset of views at a time might be more plausible. For example, conditional information

could be appended to layers of the network to inform it of the current view being stylized. It

has also been shown that a light field can be reconstructed from just a small subset of views

of the light field [26]. These and other modifications may soon allow for a fully feed-forward

light field stylization network as well as other light-field neural networks.

This line of work, along with general editing of light fields using neural networks, is

the current aim of our ongoing research.
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Chapter 5

Conclusion

This thesis has presented a method for light field stylization. This is done through

informing the stylization network of correspondences between images. We found our results

to be visually appealing while minimizing artifacts. This work could be extended by finding

more computationally efficient methods through processes such as training a feed-forward

network specifically for light fields.

Additionally, this work marks a step forward in light field processing methods. As light

field technology continues to improve and be adopted for more computer vision applications,

the need for simple methods of light field editing will continue to grow, especially as the

capabilities of image processing neural networks continue to expand. Although this work is

specific to style transfer, it potentially sets a foundation of consistency optimizations that

will generalize to more applications.
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